The proposed hydrogen-bonding scheme is supported (a) by the $\mathrm{O}-\mathrm{O}$ distances in Table 2, and (b) by the observation of peaks in the difference Fourier map attributable to H atoms. Table 2 includes all $\mathrm{O}-\mathrm{O}$ distances (not including O atoms in the same phosphate group) out to a distance of $3 \cdot 10 \AA$. Nearly all of these short contacts may be attributed to $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions. As can be seen, $\mathrm{O}(16)$ has four oxygen near neighbours in the range 2.738 to $3.003 \AA$, all of which suggest some degree of interaction between the atoms concerned. It appears that $\mathrm{H}(19)$ does not take part in hydrogen bonding; this seems reasonable as the nearest possible acceptor, $\mathrm{O}(21)$, is at a distance $3.032 \AA$ from $\mathrm{O}(20)$.

We also conducted a ${ }^{31} \mathrm{P}$ solid-state magic-anglespinning NMR study of the isomorphous compound $\mathrm{Na}_{3} \mathrm{ZnP}_{3} \mathrm{O}_{10} .12 \mathrm{H}_{2} \mathrm{O}$; spectra of the title compound cannot be obtained owing to the paramagnetism of the Mn^{2+} ion. Broad resonances were observed at -6.0 and -19.3 p.p.m. (upfield relative to 85% phosphoric acid solution). The relative intensities of the two peaks show that the terminal P nuclei resonate at lower field than the bridging P , in agreement with previous work (Grimmer \& Haubenreisser, 1983). However, the presence of the quadrupolar Na nuclei causes sufficient broadening to make the terminal P nuclei indistinguishable.

We acknowledge the assistance of Dr John Finney for his helpful discussions concerning the hydrogen
bonding. One of us (PL) thanks the SERC for the provision of a Research Studentship.

References

Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Carruthers, J. R. \& Watkin, D. J. (1981). CR YSTALS. User Manual. Oxford Univ. Computing Laboratory, Oxford.
Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Grimmer, A. R. \& Haubenreisser, U. (1983). Chem. Phys. Lett. 99, 487-490.
Haromy, T. P., Gilletti, P. F., Cornelius, R. D. \& Sundaralingam, M. (1984). J. Am. Chem. Soc. 106, 28122818.

Herceg, M. (1974). 2nd Eur. Crystallogr. Meet., Keszthely, Hungary.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jouini, O., Dabbabi, M., Averbuch-Pouchot, M. T., Durif, A. \& Guitel, J. C. (1984). Acta Cryst. C40, 728-730.
Lutsko, V. \& Johansson, G. (1984). Acta Chem. Scand. Ser. A, 38, 415-417.
Merritt, E. A. \& Sundaralingam, M. (1980). Acta Cryst. B36, 2576-2584.
Merritt, E. A. \& Sundaralingam, M. (1981). Acta Cryst. B37, 1505-1509.
Merritt, E. A., Sundaralingam, M. \& Cornellus, R. D. (1981). Acta Cryst. B37, 657-659.
Rakotomahanina, E., Averbuch-Рouchot, M.-T. \& Durif, A. (1972). Bull. Soc. Fr. Minéral. Cristallogr. 95, 516-520.

Structure of $\zeta_{\mathbf{1}}-\mathbf{M n}_{\mathbf{5 . 1 1}} \mathbf{G e}_{\mathbf{2}}$

By Y. Komura, T. Ohba, K. Kifune and H. Hirayama
Department of Materials Science, Faculty of Science, Hiroshima University, Higasi-senda-machi, Naka-ku, Hiroshima 730, Japan
T. Tagai
Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

and N. Yamada and T. Ohoyama
Department of Engineering Physics, The University of Electro-Communications, Chofu-shi, Tokyo 182, Japan
(Received 13 June 1986; accepted 15 July 1986)

Abstract. $M_{r}=425 \cdot 97$, trigonal, $P 3 c 1, a=7 \cdot 198$ (1), $c=39.227$ (4) $\AA, V=1760 \cdot 1 \AA^{3}, D_{x}=7.233 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=18(92 \mathrm{Mn}$ and 36 Ge per unit cell), Mo $K \alpha$, $\lambda=0.71069 \AA, \mu=31.0 \mathrm{~mm}^{-1}, \quad F(000)=3452, T=$ 295 K , final $R(F)=0.0557, w R(F)=0.0400$ for 923
independent reflections. The structure is characterized by two kinds of fundamental layers having three atoms stacked alternately by $c / 30$. Additional atoms are placed on three threefold axes. Ge atoms are located every 2.5 layers and Mn atoms are placed at the © 1987 International Union of Crystallography
remaining fundamental layers and on three threefold axes.

Introduction. There are five intermetallic compounds in the $\mathrm{Mn}-\mathrm{Ge}$ system: $\mathrm{Mn}_{3.25} \mathrm{Ge}, \quad \mathrm{Mn}_{5} \mathrm{Ge}_{2}, \quad \mathrm{Mn}_{2} \mathrm{Ge}$, $\mathrm{Mn}_{5} \mathrm{Ge}_{3}$ and $\mathrm{Mn}_{11} \mathrm{Ge}_{8} . \mathrm{Mn}_{3.25} \mathrm{Ge}$ has high- and lowtemperature phases, whose structures are respectively of types $\mathrm{Ni}_{3} \mathrm{Sn}\left(D 0_{19}\right)$ (Z wicker, Jahn \& Schubert, 1949) and $\mathrm{Al}_{3} \mathrm{Ti}\left(D 0_{22}\right)$ (Kádár \& Krén, 1971). $\mathrm{Mn}_{5} \mathrm{Ge}_{2}$ also has high- and low-temperature phases. The low-temperature κ phase belongs to a $\mathrm{Mg}_{5} \mathrm{Ga}_{2}$-type structure (Ohba, Ueyama, Kitano \& Komura, 1984). The crystal structures of $\chi-\mathrm{Mn}_{2} \mathrm{Ge}, \eta-\mathrm{Mn}_{5} \mathrm{Ge}_{3}$ and $\theta-\mathrm{Mn}_{11} \mathrm{Ge}_{8}$ have been analyzed to be $\mathrm{Ni}_{2} \operatorname{In}\left(B 8_{2}\right)$ (Ellner, 1980), $\mathrm{Mn}_{5} \mathrm{Si}_{3}\left(D 8_{8}\right)$ (Castelliz, 1953) and $\mathrm{Cr}_{11} \mathrm{Ge}_{8}$ types (Israiloff, Völlenkle \& Wittmann, 1974; Ohba, Watanabe \& Komura, 1984), respectively.

The high-temperature phase $\zeta-\mathrm{Mn}_{5} \mathrm{Ge}_{2}$ shows anomalous magnetic behaviour (Ohoyama, 1961; Wachtel \& Henig, 1969; Yamada, Ohashi \& Ohoyama, 1982). The structure of $\zeta-\mathrm{Mn}_{5} \mathrm{Ge}_{2}$ was first reported by Zwicker et al. (1949) and they found by X-ray powder diffraction that the structure is closely related to $\mathrm{NiAs}\left(B 8_{1}\right)$ or $\mathrm{Ni}_{2} \mathrm{In}\left(B 8_{2}\right)$ type. Ohoyama (1961) proposed that the structure was hexagonal, $a=7 \cdot 18, c=13.08 \AA$ and had close connections with the $\mathrm{Ni}_{2} \mathrm{In}\left(B 8_{2}\right)$ type structure. Komura \& Hirayama (1981) examined the crystal structure and found that the crystal was trigonal, space group $P 3 c 1$, lattice constants $a=7.185, c=39.17 \AA$ from single-crystal X-ray diffraction data. The structure was refined by full-matrix least squares to a final R value of $0 \cdot 095$. However, a few atoms were found to have negative temperature factors and some others anomalously large ones.

Kifune \& Komura (1986) observed $\zeta-\mathrm{Mn}_{5} \mathrm{Ge}_{2}$ by transmission electron microscopy. They found the parallel intergrowth of two types of structures in electron micrographs. Selected-area electron diffraction patterns of the two structures showed that they have different lattice constants along the c axis; i.e. one is $39 \AA$ and the other $13 \AA$ in the hexagonal cell. We call the former ζ_{1} and the latter ζ_{2} hereafter in this paper.

Mixed crystals of ζ_{1} and ζ_{2} have double peaks in the magnetization measurement against temperature (Yamada, Sakai, Usami \& Ohoyama, 1986). The samples which show no such double peaks in magnetization have been obtained by a precise control of the concentration. Such samples have been found by X-ray examination to be pure $\zeta_{1}-\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$. In this paper, the structure determination of $\zeta_{1}-\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$ is reported using such a sample.

Experimental. A tiny fragment of an irregular shape, maximum dimension 0.09 mm , was selected for singlecrystal work from an ingot of pure $\zeta_{1}-\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$. Laue photographs were taken in order to ascertain that the
fragment was a single crystal and they showed Laue symmetry $\overline{3} m$. Lattice constants estimated from interplanar spacings are $a=7 \cdot 198$ (1) and $c=39.227$ (4) \AA using 25 reflections $\left(19^{\circ}<2 \theta<41^{\circ}\right)$. Rigaku automated four-circle diffractometer (AFC-5), graphitemonochromated Mo $K \alpha$ radiation, 3729 measured reflections with $\left|F_{o}\right| \geq 3 \sigma\left(\left|F_{o}\right|\right),-9 \leq h \leq 9,-9 \leq$ $k \leq 9,0 \leq l \leq 50,2^{\circ} \leq 2 \theta \leq 50^{\circ}$, averaged to 923 independent reflections; $R_{\text {int }}=0.0644 . \omega$ scan was employed because of long c axis, scan range $(1.5+$ $0.5 \tan \theta)^{\circ}$, scan rate $2^{\circ} \mathrm{min}^{-1}$. Backgrounds measured at the beginning and end of each scan range for $5 \mathrm{~s} . \mathrm{Lp}$ and spherical absorption corrections ($\mu r=1 \cdot 1$) applied. Systematic absences indicate space group $P 3 c 1$ or $P \overline{3} c 1$.

An initial structure was constructed by comparison with the structure of $\mathrm{Mn}_{5} \mathrm{Ge}_{3}$. The direct method was also applied for the determination of the structure. The framework obtained by the latter method is similar to that obtained by the former. Several atoms were added to the initial structure model and atomic positions were corrected to reduce the residual peaks in the Fourier synthesis and the difference Fourier maps. Centrosymmetric space group $P \overline{3} c 1$ was ruled out in the course of this procedure.

Full-matrix least-squares refinement using RADIEL (Coppens, Guru Row, Leung, Stevens, Becker \& Yang, 1979); variable parameters: isotropic temperature factors, scale factor, positional parameters and isotropic extinction correction parameter. Scattering factors and anomalous-dispersion correction f^{\prime} and $f^{\prime \prime}$ for Mn and Ge atoms from International Tables for X-ray Crystallography (1974). Final R value is $R(F)=$ 0.0557, $\quad w R(F)=0.0400, \quad w=1 / \sigma^{2}\left(\left|F_{o}\right|\right), \quad S=$ $1.3123, \quad g=0.104 \times 10^{-4} \quad\left(y_{\min }=0.66\right) . \quad(\Delta / \sigma)_{\max }=$ 0.28 and $\Delta \rho$ excursions $\leq 13.5 \mid \mathrm{e} \AA^{-3}$. Determination of the polar direction has not been attempted. Calculations carried out with HITAC M-200H computer at the Information Processing Center of Hiroshima University.

Discussion. In a previous work (Komura \& Hirayama, 1981), the R value could not be reduced sufficiently and a few atoms had negative temperature factors and some others anomalously large ones. The reason for these difficulties may be the inappropriate choice of the crystal specimen; that is, the sample used in the previous work was a mixture of ζ_{1} and ζ_{2}, so the intensities of reflections with $l=3 n$ should be the sum of ζ_{1} and ζ_{2}.

The final parameters obtained are listed in Table 1. The structure obtained (Fig. 1) is thus more accurate than that reported previously. The structure is constructed by 30 fundamental layers of two kinds, shown in Fig. $1(a)$, stacked alternately along the \mathbf{c} direction by about $c / 30$. Ge layers are placed on every five layers. Mn and Ge atoms placed on the threefold axes are
represented by open and filled circles, respectively, in Fig. $1(b)$. Ge atoms on the threefold axes are located almost every five layers, so that it is found that distances between Ge atoms on the threefold axes and fundamental layers are approximately 2.5 layers. This arrangement produces strong intensity for $0,0,12$.

	Table 1. A tomic parameters for $\zeta_{1}-\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$				
		x	y	z	$B_{0}\left(\AA^{2}\right)$
Mn (1)	6(d)	0.3263 (16)	0.0278 (17)	0.0	0.92 (17)
$\mathrm{Mn}(2)$	6(d)	-0.0292 (13)	-0.3626 (13)	$0 \cdot 1679$ (3)	0.03 (12)
Mn (3)	6(d)	0.3364 (17)	0.0333 (16)	0.3349 (3)	0.68 (16)
Mn(4)	6(d)	0.6055 (14)	-0.0549 (14)	0.0325 (3)	0.42 (13)
$\mathrm{Mn}(5)$	6(d)	0.0412 (8)	-0.6524 (7)	0.1999 (1)	1.05 (8)
Mn (6)	6(d)	0.6097 (14)	-0.0589 (15)	0.3651 (3)	1.18 (15)
$\mathrm{Ge}(7)$	6(d)	0.3230 (6)	0.0064 (11)	0.0653 (1)	0.82 (4)
$\mathrm{Ge}(8)$	6(d)	-0.0026 (13)	-0.3482 (10)	0.2316 (2)	0.80 (10)
$\mathrm{Ge}(9)$	6(d)	0.3390 (13)	-0.0067 (12)	0.3991 (2)	0.91 (13)
$\mathrm{Mn}(10)$	6(d)	0.6639 (8)	0.0566 (8)	0.0987 (1)	1.54 (9)
$\mathrm{Mn}(11)$	6(d)	-0.0385 (16)	-0.6797 (15)	0.2671 (3)	0.95 (15)
$\mathrm{Mn}(12)$	6(d)	0.6912 (15)	0.0285 (15)	0.4319 (3)	0.71 (15)
Mn (13)	6(d)	0.3053 (18)	-0.0334 (18)	0.1321 (2)	0.79 (18)
$\mathrm{Mn}(14)$	6(d)	0.0231 (7)	-0.3223 (8)	0.2973 (1)	0.76 (8)
Mn (15)	6(d)	0.3281 (20)	-0.0222 (20)	0.4648 (3)	1.71 (21)
$\mathrm{Mn}(16)$	2(a)	0.0	0.0	0.0359 (4)	1.92 (29)
$\mathrm{Mn}(17)$	2(a)	$0 \cdot 0$	0.0	0.0988 (3)	0.12 (17)
$\mathrm{Mn}(18)$	$2(a)$	$0 \cdot 0$	$0 \cdot 0$	0.2359 (4)	1.83 (22)
$\mathrm{Mn}(19)$	2(a)	$0 \cdot 0$	0.0	0.3761 (4)	0.75 (17)
$\mathrm{Ge}(20)$	2(a)	$0 \cdot 0$	$0 \cdot 0$	0.1626 (4)	1.78 (22)
$\mathrm{Ge}(21)$	2(a)	$0 \cdot 0$	$0 \cdot 0$	0.3077 (3)	1.02 (13)
$\mathrm{Ge}(22)$	2(a)	0.0	$0 \cdot 0$	0.4678 (3)	0.49 (14)
$\mathrm{Ge}(23)$	$2(b)$	$\frac{1}{3}$	$\frac{2}{3}$	0.4906 (3)	0.74 (17)
Ge (24)	2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.1585 (3)	0.89 (18)
$\mathrm{Ge}(25)$	2 (b)	1	${ }^{\frac{2}{3}}$	0.3238 (3)	$1 \cdot 11$ (18)
$\mathrm{Mn}(26)$	2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.0884 (4)	1.30 (29)
Mn (27)	2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.2545 (5)	1.63 (31)
Mn (28)	$2(b)$	$\frac{1}{3}$	$\frac{2}{3}$	0.4234 (5)	1.06 (28)
$\mathrm{Mn}(29)$	2(c)	$\frac{2}{3}$	$\frac{1}{3}$	0.0412 (4)	0.88 (26)
$\mathrm{Mn}(30)$	2(c)	$\frac{2}{3}$	$\frac{1}{3}$	0.2069 (4)	0.32 (23)
$\mathrm{Mn}(31)$	2(c)	$\frac{2}{3}$	$\frac{1}{3}$	0.3748 (4)	0.04 (20)
$\mathrm{Ge}(32)$	2(c)	$\frac{2}{3}$	$\frac{1}{5}$	0.1410 (3)	1.01 (19)
$\mathrm{Ge}(33)$	2 (c)	$\frac{2}{3}$	$\frac{1}{3}$	0.3087 (3)	0.91 (19)
$\mathrm{Ge}(34)$	2(c)	${ }^{2}$	$\frac{1}{3}$	0.4730 (3)	0.88 (18)

(a)

Fig. 1. Structure of $\zeta_{1}-\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$. (a) Arrangement of atoms in the fundamental layers. (b) Projection of the structure along [010]. Half of the unit cell is drawn. Fundamental layers and threefold axes are represented by horizontal and vertical lines, respectively. Atoms on threefold axes are represented by large open and filled circles. The kinds of atoms in the fundamental layers are shown by small open and filled circles beside the figure.

Table 2. Coordination numbers and interatomic distances (\AA) for $\zeta_{1}-\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$

	Coordination	Interatomic distances	
	numbers	min .	max.
Mn (1)	13 (9 Mn, 4 Ge)	2.564 (9)	2.889 (17)
$\mathrm{Mn}(2)$	$12(8 \mathrm{Mn}, 4 \mathrm{Ge})$	2.429 (10)	2.833 (21)
$\mathrm{Mn}(3)$	13 (9 Mn, 4 Ge)	2.497 (10)	2.919 (15)
$\mathrm{Mn}(4)$	$12(8 \mathrm{Mn}, 4 \mathrm{Ge})$	2.577 (12)	3.022 (10)
Mn(5)	13 (8 Mn, 5 Ge)	2.542 (11)	3.074 (13)
Mn (6)	$12(8 \mathrm{Mn}, 4 \mathrm{Ge})$	2.540 (16)	$3 \cdot 178$ (12)
Ge (7)	12 (12 Mn)	2.533 (9)	3.097 (7)
$\mathrm{Ge}(8)$	11 (11 Mn)	2.506 (15)	3.035 (12)
$\mathrm{Ge}(9)$	11 (11 Mn)	2.518 (12)	3.178 (12)
$\mathrm{Mn}(10)$	$12(8 \mathrm{Mn}, 4 \mathrm{Ge})$	2.533 (9)	3.097 (7)
$\mathrm{Mn}(11)$	13 (8 Mn, 5 Ge)	2.633 (10)	$3 \cdot 208$ (16)
Mn (12)	$13(8 \mathrm{Mn}, 5 \mathrm{Ge})$	2.612 (8)	$3 \cdot 200$ (16)
$\mathrm{Mn}(13)$	13 (9 Mn, 4 Ge)	2.492 (15)	2.906 (16)
$\mathrm{Mn}(14)$	13 (9 Mn, 4 Ge)	2.441 (6)	$3 \cdot 307$ (11)
Mn (15)	$12(8 \mathrm{Mn}, 4 \mathrm{Ge})$	2.449 (17)	2.880 (23)
Mn (16)	$11(7 \mathrm{Mn}, 4 \mathrm{Ge}$)	2.468 (20)	2.672 (20)
$\mathrm{Mn}(17)$	$11(7 \mathrm{Mn}, 4 \mathrm{Ge})$	2.468 (20)	2.667 (15)
$\mathrm{Mn}(18)$	14 (9 Mn, 5 Ge)	2.516 (9)	3.307 (11)
Mn (19)	13 (9 Mn, 4 Ge)	2.625 (11)	$3 \cdot 199$ (15)
$\mathrm{Ge}(20)$	11 (11 Mn)	2.503 (19)	3.016 (20)
$\mathrm{Ge}(21)$	11 (11 Mn)	2.441 (6)	2.926 (14)
$\mathrm{Ge}(22)$	10 (10 Mn)	2.449 (17)	2.724 (14)
$\mathrm{Ge}(23)$	10 (10 Mn)	2.474 (16)	2.651 (13)
$\mathrm{Ge}(24)$	10 (10 Mn)	2.492 (15)	2.749 (21)
$\mathrm{Ge}(25)$	10 (10 Mn)	2.499 (8)	2.718 (22)
Mn(26)	13 (9 Mn, 4 Ge)	2.643 (10)	2.954 (16)
Mn (27)	13 (9 Mn, 4 Ge)	2.530 (12)	3.074 (13)
$\mathrm{Mn}(28)$	$13(9 \mathrm{Mn}, 4 \mathrm{Ge}$)	2.518 (12)	3.026 (18)
Mn (29)	$13(9 \mathrm{Mn}, 4 \mathrm{Ge})$	2.594 (7)	3.003 (14)
$\mathrm{Mn}(30)$	$13(9 \mathrm{Mn}, 4 \mathrm{Ge})$	2.531 (9)	3.208 (16)
$\mathrm{Mn}(31)$	$13(9 \mathrm{Mn}, 4 \mathrm{Ge})$	2.586 (9)	$3 \cdot 200$ (16)
$\mathrm{Ge}(32)$	$10(10 \mathrm{Mn}$)	2.429 (10)	2.644 (9)
$\mathrm{Ge}(33)$	10 (10 Mn)	2.497 (10)	2.717 (14)
$\mathrm{Ge}(34)$	$10(10 \mathrm{Mn}$)	2.521 (10)	2.798 (14)

The arrangement of atoms at two successive fundamental layers resembles the arrangement at the layer $z=\frac{1}{4}$ or $\frac{3}{4}$ in the structure of $\mathrm{Mn}_{5} \mathrm{Si}_{3}\left(D 8_{8}\right)$. They are separated into two layers in the structure of ζ_{1}. Atoms on two threefold axes, $\frac{12}{33} z$ and $\frac{21}{33} z$, in $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ are placed regularly at $z=0$ and $\frac{1}{2}$. On the other hand, the positions of atoms on three threefold axes in $\zeta_{1}-$ $\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$ are not so regular.

Interatomic distances and coordination numbers are listed in Table 2.* An anomalously short distance, $2.21 \AA$, in the previous work has been removed here. Coordination numbers of Mn range from 11 to 14 . On the other hand, Ge atoms are surrounded by only 10 to 12 Mn atoms. It is interesting to consider the number of Mn atoms which are located around an Mn atom. Mn atoms in the fundamental layers are surrounded by eight or nine Mn atoms. Mn atoms on the threefold axes with $\frac{12}{33} z$ and $\frac{21}{33} z$ have nine Mn atoms around them. The number of coordinated Mn atoms on $00 z$ is seven or nine. The difference arises from the number of atoms on the three threefold axes, i.e. there are fourteen atoms located on the threefold axis through $00 z$ and twelve atoms on the other threefold axes. The difference in the

[^0]numbers on the threefold axes leads to the deviation from stoichiometry of the compound. The chemical formula can be described as $\mathrm{Mn}_{5.11} \mathrm{Ge}_{2}$ instead of $\mathrm{Mn}_{5} \mathrm{Ge}_{2}$ according to the results of the refinement. This deviation sensitively affects the magnetic properties as shown by Yamada et al. (1986).

The structure is fairly complex with long periodicity along c. The structure is not directly related to $\mathrm{Mn}_{5} \mathrm{Si}_{2}$ (Shoemaker \& Shoemaker, 1976), contrary to the relation between $\mathrm{Mn}_{5} \mathrm{Ge}_{3}$ and $\mathrm{Mn}_{5} \mathrm{Si}_{3}$.

The separation of a single crystal of $\zeta_{2}-\mathrm{Mn}_{5} \mathrm{Ge}_{2}$ is now being attempted in order to perform a structure determination

The present work has partly been supported by a Scientific Research Grant from the Ministry of Education, Science and Culture, to which the authors' thanks are due.

Coppens, P., Guru Row, T. N., Leung, P., Stevens, E. D., Becker, P. D. \& Yang, Y. W. (1979). Acta Cryst. A35, 63-72. Ellner, M. (1980). J. Appl. Cryst. 13, 99-100.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Isralloff, P., Völlenkle, H. \& Wittmann, A. (1974). Monatsh. Chem. 105, 1387-1404.
Kádár, G. \& Krén, E. (1971). Int. J. Magn. 1, 143-148.
Kifune, K. \& Komura, Y. (1986). Cryst. Res. Technol. 21, 1229-1234.
Komura, Y. \& Hirayama, H. (1981). Acta Cryst. A37, C184C185.
Ohba, T., Ueyama, K., Kitano, Y. \& Komura, Y. (1984). Acta Cryst. C40, 576-579.
Ohba, T., Watanabe, N. \& Komura, Y. (1984). Acta Cryst. B40, 351-354.
Оночama, T. (1961). J. Phys. Soc. Jpn, 16, 1995-2002.
Shoemaker, C. B. \& Shoemaker, D. P. (1976). Acta Cryst. B32, 2306-2313.
Wachtel, E. \& Henig, E.-T. (1969). Z. Metallkd. 60, 243-247.
Yamada, N., Ohashi, T. \& Ohoyama, T. (1982). J. Phys. Soc. Jpn, 51, 2041-2042.
Yamada, N., Sakal, H., Usami, Y. \& Оhoyama, T. (1986). J. Magn. Magn. Mat. 54-57, 929-930.
Zwicker, U., Jahn, E. \& Schubert, K. (1949). Z. Metallkd. 40, 433-436.

Castelliz, L. (1953). Monatsh. Chem. 84, 765-776.

Acta Cryst. (1987). C43, 10-12

Refinement of the Structure of Copper(II) Chromate from Single-Crystal Data

By Nikolaos Seferiadis and Hans R. Oswald
Institute for Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

(Received 23 October 1985; accepted 18 July 1986)

Abstract. $\quad \mathrm{CuCrO}_{4}, \quad M_{r}=179.54$, orthorhombic, Cmcm, $a=5.433$ (1), $b=8.968$ (3), $c=5.890$ (3) \AA, $V=287.0(2) \AA^{3}, Z=4, D_{m}$ (pycnometrically) $=4.04$, $D_{x}=4.155 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $109.5 \mathrm{~cm}^{-1}, F(000)=340, T=293 \mathrm{~K}, R=0.039$ with 556 unique observed reflections. The structure is built up by chains of edge-linked tetragonally distorted CuO_{6} octahedra, which are connected by slightly irregular CrO_{4} tetrahedra sharing their O atoms with the octahedra. $\quad \mathrm{Cu}-\mathrm{O}$ (equatorial) $=1.965(2), \quad \mathrm{Cu}-$ $\mathrm{O}($ axial $)=2.400(3)$, mean $\mathrm{Cr}-\mathrm{O}=1.665 \AA$. These bond lengths are significantly different from those found previously from powder data.

Introduction. Compounds ABO_{4} have been shown to exist in numerous structures, many of which are polymorphous at atmospheric pressure and also adopt different structures at higher pressure. These compounds range from those with silica-like structures, with tetrahedral coordination of A and B, to oxide salts
containing well defined anions $B \mathrm{O}_{4}$ and exhibiting high coordination number of \boldsymbol{A} (Wells, 1984).
CuCrO_{4} is isomorphous with CrVO_{4}, and its structure has been determined from powder data by Brandt (1943). Owing to the limited data - strong reflections at small 2θ angles such as 110,020 are not mentioned - the previous work cannot be considered as very precise. Since mixed oxides containing chromium in various oxidation states and other transition metals are of importance in heterogeneous catalysis, a refinement of the crystal structure of CuCrO_{4} using diffractometer data was undertaken.

Experimental. Dark red twinned preferentially needleshaped crystals of CuCrO_{4}, with a metallic lustre, were obtained by heating an aqueous solution of CrO_{3} with an excess of $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ in a sealed glass tube at 470 K for $\sim 20 \mathrm{~h}$. Structure determination with an irregularly shaped tabular single crystal $0.30 \times 0.06 \times$ 0.02 mm , cut from a twin. Preliminary precession and © 1987 International Union of Crystallography

[^0]: * Lists of structure factors and interatomic distances have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43253 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

